Wednesday, June 29, 2022
HomeTechnologyA systematic review on the modifications of extracellular vesicles: a revolutionized tool...

A systematic review on the modifications of extracellular vesicles: a revolutionized tool of nano-biotechnology | Journal of Nanobiotechnology


  • 1.

    Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev ClinOncol. 2018;10:617–38.


    Google Scholar
     

  • 2.

    Raghav A, Khan ZA, Upadhayay VK, Tripathi P, Gautam KA, Mishra BK, Ahmad J, Jeong G. Mesenchymal stem cell-derived exosomes exhibit promising potential for treating SARS-CoV-2-infected patients. Cells. 2021;10:587.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Raghav A, Tripathi P, Mishra BK, Jeong GB, Banday S, Gautam KA, Mateen QN, Singh P, Singh M, Singla A, Ahmad J. Mesenchymal stromal cell-derived tailored exosomes treat bacteria-associated diabetes foot ulcers: a customized approach from bench to bed. Front Microbiol. 2021;12:712588.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles and friends. J Cell Biol. 2013;200:373–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Lewis JM, Vyas AD, Qiu Y, Messer KS, White R, Heller MJ. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano. 2018;12(4):3311–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Cavallaro S, Horak J, Hååg P, Gupta D, Stiller C, Sahu SS, Görgens A, Gatty HK, Viktorsson K, El Andaloussi S, Lewensohn R, Karlström AE, Linnros J, Dev A. Label-free surface protein profiling of extracellular vesicles by an electrokinetic sensor. ACS Sens. 2019;4(5):1399–408.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Yan Z, Dutta S, Liu Z, Yu X, Mesgarzadeh N, Ji F, Bitan G, Xie YH. A label-free platform for identification of exosomes from different sources. aCS Sens. 2019;2:488–97.


    Google Scholar
     

  • 8.

    He S, Liu G, Zhu X. Human breast milk-derived exosomes may help maintain intestinal epithelial barrier integrity. Pediatr Res. 2021;90:366–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Sun Y, Huo C, Qiao Z, Shang Z, Uzzaman A, Liu S, Jiang X, Fan LY, Ji L, Guan X, Cao CX, Xiao H. Comparative proteomic analysis of exosomes and microvesicles in human saliva for lung cancer. J Proteome Res. 2018;17:1101–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Patel GK, Khan MA, Zubair H, Srivastava SK, Khushman M, Singh S, Singh AP. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci Rep. 2019;9(1):5335.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, Gho YS, Ku-rochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Théry C. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;1:26913.


    Google Scholar
     

  • 12.

    Bertrand N, Leroux JC. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Controlled Release. 2012;161:152–63.

    CAS 

    Google Scholar
     

  • 13.

    Lai CP, Breakefield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012;3:228.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    El Andaloussi S, Lakhal S, Mager I, Wood MJ. Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev. 2013;65:391–7.

    PubMed 

    Google Scholar
     

  • 15.

    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19:1769–79.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet. 2012;21:R125–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Iraci N, Leonardi T, Gessle F, Vega B, Pluchino S. Focus on extracellular vesicles: physiological role and signaling properties of extracellular membrane vesicles. Int J Mol Sci. 2016;17:171.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Bakht M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem. 2011;286:787–96.


    Google Scholar
     

  • 19.

    Pusic KM, Pusic AD, Kraig RP. Environmental enrichment stimulates immune cell secretion of exosomes that promote CNS myelination and may regulate inflammation. Cell Mol Neurobiol. 2016;36:313–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res. 2011;109:724–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, Chen D. Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B. 2019;7:2421.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Zhang Y, Liu Y, Liu H, Tang WH. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 2019;9(19):1–18.


    Google Scholar
     

  • 24.

    Zhang G, Yang P. A novel cell-cell communication mechanism in the nervous system: exosomes. J Neurosci Res. 2018;96:45–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Maroto R, Zhao Y, Jamaluddin M, Popov VL, Wang H, Kalubowilage M, Zhang Y, Luisi J, Sun H, Culbertson CT, Bossmann SH, Motamedi M, Brasier AR. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles. 2017;6:1359478.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Melissa L, Rethlefsen S, Kirtley S, Waffenschmidt A, Patricia A, David M, Page MJ, Koffel JB, PRISMA-S Group. PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst Rev. 2021;10:39.


    Google Scholar
     

  • 27.

    Tyson S, Krastina P, Payton NM, Persaud I, Jasmina S, Michael RW, Graner PS, Thomas JA. Surface functionalization of exosomes using click chemistry. Bioconjugate Chem. 2014;25:1777–84.


    Google Scholar
     

  • 28.

    Song S, Shim M, Lim S, Moon Y, Yang S, Kim J, Hong Y, Kim Y, Hwang S, Kim K. In situ one-step fluorescence labeling strategy of exosomes via bioorthogonal click chemistry for real-time exosome tracking in vitro and in vivo. Bioconjugate Chem. 2020;13:1562–74.


    Google Scholar
     

  • 29.

    Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials. 2018;150:137–49.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Lee TS, Kim Y, Zhang W, Song IH, Tung CH. Facile metabolic glycan labeling strategy for exosome tracking. Biochim Biophys Acta Gen Subj. 2018;1862:1091–100.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Ming T, Smeekens JM, Xiao H, Wu R. Systematic quantification of the dynamics of newly synthesized proteins unveiling their degradation pathways in human cells. Chem Sci. 2020;11:3557–68.


    Google Scholar
     

  • 32.

    Wang M, Altinoglu S, Takeda YS, Xu Q. Integrating protein engineering and bioorthogonal click conjugation for extracellular vesicle modulation and intracellular delivery. PLoS ONE. 2015;10:e0141860.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Emam SE, Ando H, Lila ASA, Shimizu T, Okuhira K, Yu I, Mahmoud A, Mahdy FS, Ghazy IS, Tatsuhiro I. Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways. Sci Rep. 2018;8:14493.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Liu Y, Bai L, Guo K, Jia Y, Zhang K, Liu Q, Wang P, Wang X. Focused ultrasound-augmented targeting delivery of nano-sonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics. 2019;9:5261–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Murdica V, Giacomini E, Makieva S, Zarovni N, Candiani M, Salonia A, Vago R, Viganò P. In vitro cultured human endometrial cells release extracellular vesicles that can be uptaken by spermatozoa. Sci Rep. 2020;10:8856.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Fu S, Yi W, Xia X, Zheng JC. Exosome engineering: Current progress in cargo loading and targeted delivery. Nano Impact. 2020;20:100261.


    Google Scholar
     

  • 37.

    O’Loughlin AJ, Mäger I, de Jong OG, Varela MA, Schiffelers RM, El Andaloussi S, Wood MJA, Vader P. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. MolTher. 2017;25:1580–7.


    Google Scholar
     

  • 38.

    Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrums. Protein Cell. 2013;4:197–210.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Yang T, Fogarty B, LaForge B, Aziz S, Pham T, Lai L, Bai S. Delivery of small interfering RNA to inhibit vascular endothelial growth factor in Zebrafish using natural brain endothelia cell-secreted exosome nanovesicles for the treatment of brain cancer. AAPS J. 2017;19:475–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Lin Y, Wu J, Gu W, Huang Y, Tong Z, Huang L, Tan J. Exosome-liposome hybrid nanoparticles deliver CRISPR/Cas9 sys-tem in MSCs. Adv Sci. 2018;5:1700611.


    Google Scholar
     

  • 41.

    Kim SM, Yang Y, Oh SJ, Hong Y, Seo M, Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J Control Release. 2017;266:8–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nano Med. 2017;12:655–64.


    Google Scholar
     

  • 43.

    Pomatto MAC, Bussolati B, D’Antico S, Ghiotto S, Tetta C, Brizzi MF, Camussi G. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol Ther Methods ClinDev. 2019;13:133–44.

    CAS 

    Google Scholar
     

  • 44.

    Fuhrmann G, Serio A, Mazo M, Nair R, Stevens MM. Active loading into extra-cellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J Control Release. 2015;205:35–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, Shiku H, Akiyoshi K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep. 2016;6:21933.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nano-platforms for drug delivery. Acta Pharmacol Sin. 2017;38:754–63.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Monfared H, Jahangard Y, Nikkhah M, Mirnajafi-Zadeh J, Mowla SJ. Potential therapeutic effects of exosomes packed with a miR-21-sponge construct in a rat model of glioblastoma. Front Oncol. 2019;9:782.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Liu Q, Rojas-Canales DM, Divito SJ, Shufesky WJ, Stolz DB, Erdos G, Sullivan ML, Gibson GA, Watkins SC, Larregina AT, Morelli AE. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest. 2016;126:2805–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Le Saux S, Aarrass H, Lai-Kee-Him J, Bron P, Armengaud J, Miotello G, Bertrand-Michel J, Dubois E, George S, Faklaris O, Devoisselle JM, Legrand P, Chopineau J, Morille M. Post-production modifications of murine mesenchymal stem cell (mMSC) derived extracellular vesicles(EVs) and impact on their cellular interaction. Biomaterials. 2020;231:119675.

    PubMed 

    Google Scholar
     

  • 50.

    Lee B, Chen B, Huang C, Lin C. The immune activity of PT-peptide derived from anti-lipopolysaccharide factor of the swimming crab Portunustrituber-culatus is enhanced when encapsulated in milk-derived extracellular vesicles. Mar Drugs. 2019;17:248.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 51.

    Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, Patel T, Piroyan A, Sokolsky M, Kabanov AV, Batrakova EV. Exosomes as drug delivery vehicles for parkinson’s disease therapy. J Control Release. 2015;207:18–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Oshchepkova A, Neumestova A, Matveeva V, Artemyeva L, Morozova K, Kiseleva E, Zenkova M, Vlassov V. Cytochalasin-B-inducible nanovesicle mimics of natural extracellular vesicles that are capable of nucleic acid transfer. Micromachines. 2019;10:750.

    PubMed Central 

    Google Scholar
     

  • 53.

    Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, Kabanov AV, Batrakova EV. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine. 2018;14:195–204.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Salarpour S, Forootanfar H, Pournamdari M, Meysam A, Marzie E, Abbas P. Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. DARU J Pharm Sci. 2019;27:533–9.

    CAS 

    Google Scholar
     

  • 55.

    Morishita M, Takahashi Y, Matsumoto A, Nishikawa M, Takakura Y. Exosome-based tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials. 2016;111:55–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Zhao L, Jiang X, Shi J, Gao S, Zhu Y, Gu T, Shi E. Exosomes derived from bone marrow mesenchymal stem cells overexpressing microRNA-25 protect spinal cords against transient ischemia. J Thorac Cardiovasc Surg. 2019;157:508–17.

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Limoni SK, Moghadam MF, Moazzeni SM, Gomari H, Salimi F. Engineered exosomes for targeted transfer of siRNA to HER2 positive breast cancer cells. Appl Biochem Biotechnol. 2019;187:352–64.

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood M. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Sci Rep. 2019;9:10041.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Jo W, Jeong D, Kim J, Cho S, Jang S, Han C, Kang J, Gho YS, Park J. Microfluidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab Chip. 2014;14:1261–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Zhao Z, McGill J, Gamero KPP, He M. Microfluidic on-demand engineering of exosomes towards cancer immunotherapy. Lab Chip. 2019;19:1877–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Yi YW, Lee JH, Kim SY, Pack CG, Ha DH, Park SR, Youn J, Cho BS. Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 2020;21:665.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 63.

    Ale Ebrahim S, Ashtari A, Zamani Pedram M, Ale Ebrahim N, Sanati-Nezhad A. Publication trends in exosomes nanoparticles for cancer detection. Int J Nanomedicine. 2020;15:4453–70.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Liga A, Vliegenthart ADB, Oosthuyzen W, Dear JW, Kersaudy-Kerhoas M. Exosome isolation: a microfluidic road-map. Lab Chip. 2015;15:2388.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered extracellular vesicles as a reliable tool in cancer. Nanomed Cancers (Basel). 2019;11:1979.

    CAS 

    Google Scholar
     

  • 66.

    Klyachko NL, Arzt CJ, Li SM, Gololobova OA, Batrakova EV. Extracellular vesicle-based therapeutics: preclinical and clinical investigations. Pharmaceutics. 2020;12:1171.

    CAS 
    PubMed Central 

    Google Scholar
     

  • 67.

    Bazzan E, Tinè M, Casara A, Biondini D, Semenzato U, Cocconcelli E, Balestro E, Damin M, Radu CM, Turato G, Baraldo S, Simioni P, Spagnolo P, Saetta M, Cosio MG. Critical review of the evolution of extracellular vesicles’ knowledge: from 1946 to Toda. Int J Mol Sci. 2021;22:6417.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments