Saturday, July 2, 2022
HomeNanotechnologyEnhancing CRISPR/Cas gene enhancing via modulating mobile mechanical properties for most cancers...

Enhancing CRISPR/Cas gene enhancing via modulating mobile mechanical properties for most cancers remedy


  • Wang, H. X. et al. CRISPR/Cas9-based genome enhancing for illness modeling and remedy: challenges and alternatives for nonviral supply. Chem. Rev. 117, 9874–9906 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Cong, L. et al. Multiplex genome engineering utilizing CRISPR/Cas techniques. Science 339, 819–823 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Mali, P. et al. RNA-guided human genome engineering by way of Cas9. Science 339, 823–826 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Xue, W. et al. CRISPR-mediated direct mutation of most cancers genes within the mouse liver. Nature 514, 380–384 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Yin, H. et al. Genome enhancing with Cas9 in grownup mice corrects a illness mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Maddalo, D. et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system.Nature 516, 423–427 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Lengthy, C. Z. et al. Postnatal genome enhancing partially restores dystrophin expression in a mouse mannequin of muscular dystrophy. Science 351, 400–403 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Miller, J. B. et al. Non-viral CRISPR/Cas gene enhancing in vitro and in vivo enabled by artificial nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wei, T. et al. Supply of tissue-targeted scalpels: alternatives and challenges for in vivo CRISPR/Cas-based genome enhancing. ACS Nano 14, 9243–9262 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Huang, C. H., Lee, Okay. C. & Doudna, J. A. Purposes of CRISPR-Cas enzymes in most cancers therapeutics and detection. Tendencies Most cancers 4, 499–512 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hanahan, D. & Weinberg, R. A. Hallmarks of most cancers: the subsequent technology. Cell 144, 646–674 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome enhancing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, H. et al. Concentrating on focal adhesion kinase renders pancreatic cancers attentive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Mohammadi, H. & Sahai, E. Mechanisms and affect of altered tumour mechanics. Nat. Cell Biol. 20, 766–774 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Lampi, M. C. & Reinhart-King, C. A. Concentrating on extracellular matrix stiffness to attenuate illness: from molecular mechanisms to medical trials. Sci. Trans. Med. 10, eaao0475 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Seong, J., Wang, N. & Wang, Y. Mechanotransduction at focal adhesions: from physiology to most cancers growth. J. Cell. Mol. Med. 17, 597–604 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Serrels, A. et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell 163, 160–173 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Casey, S. C. et al. MYC regulates the antitumor immune response via CD47 and PD-L1. Science 352, 227–231 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Topalian, S. L., Drake, C. G. & Pardoll, D. M. Concentrating on the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr. Opin. Immunol. 24, 207–212 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, Okay. et al. Modular degradable dendrimers allow small RNAs to increase survival in an aggressive liver most cancers mannequin. Proc. Natl Acad. Sci. USA 113, 520–525 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, Q. et al. Dendrimer-based lipid nanoparticles ship therapeutic FAH mRNA to normalize liver operate and lengthen survival in a mouse mannequin of hepatorenal tyrosinemia kind I. Adv. Mater. 30, e1805308 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, Q. et al. Selective ORgan Concentrating on (SORT) nanoparticles for tissue particular mRNA supply and CRISPR/Cas gene enhancing. Nat. Nanotechnol. 15, 313–320 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ball, R. L., Hajj, Okay. A., Vizelman, J., Bajaj, P. & Whitehead, Okay. A. Lipid nanoparticle formulations for enhanced co-delivery of siRNA and mRNA. Nano Lett. 18, 3814–3822 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Patel, S. et al. Naturally-occurring ldl cholesterol analogues in lipid nanoparticles induce polymorphic form and improve intracellular supply of mRNA. Nat. Commun. 11, 983 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Abumanhal-Masarweh, H. et al. Tailoring the lipid composition of nanoparticles modulates their mobile uptake and impacts the viability of triple destructive breast most cancers cells. J. Management. Launch 307, 331–341 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wei, T., Cheng, Q., Min, Y.-L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle supply of CRISPR-Cas9 ribonucleoproteins for efficient tissue particular genome enhancing. Nat. Commun. 11, 3232 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA supply and CRISPR-Cas gene enhancing. Nat. Mater. 20, 701–710 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Lee, S. M. et al. A scientific research of unsaturation in lipid nanoparticles results in improved mRNA transfection in vivo. Angew. Chem. Int. Ed. 60, 5848–5853 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Mehta, G., Hsiao, A. Y., Ingram, M., Luker, G. D. & Takayama, S. Alternatives and challenges to be used of tumor spheroids as fashions to check drug supply and efficacy. J. Management. Launch 164, 192–204 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue rigidity to induce matricellular fibrosis and tumor development. Nat. Med. 22, 497–505 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Echarri, A. & Del Pozo, M. A. Caveolae–mechanosensitive membrane invaginations linked to actin filaments. J. Cell Sci. 128, 2747–2758 (2015).

    CAS 

    Google Scholar
     

  • Dupont, S. et al. Position of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Kraning-Rush, C. M., Califano, J. P. & Reinhart-King, C. A. Mobile traction stresses enhance with rising metastatic potential. PLoS ONE 7, e32572 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Chaudhuri, O. et al. Extracellular matrix stiffness and composition collectively regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Hoadley, Okay. A. et al. Multiplatform evaluation of 12 most cancers varieties reveals molecular classification inside and throughout tissues of origin. Cell 158, 929–944 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Stokes, J. B. et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the expansion and metastasis of pancreatic most cancers concomitant with altering the tumor microenvironment. Mol. Most cancers Ther. 10, 2135–2145 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular most cancers. Nature 431, 1112–1117 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Zheng, Okay., Cubero, F. J. & Nevzorova, Y. A. c-MYC making liver sick: function of c-MYC in hepatic cell operate, homeostasis and illness. Genes 8, 123 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Egeblad, M., Rasch, M. G. & Weaver, V. M. Dynamic interaction between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22, 697–706 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Most cancers Cell 8, 241–254 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Fourcade, J. et al. CD8+ T cells particular for tumor antigens might be rendered dysfunctional by the tumor microenvironment via upregulation of the inhibitory receptors BTLA and PD-1. Most cancers Res. 72, 887–896 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Schreiber, R. D., Outdated, L. J. & Smyth, M. J. Most cancers immunoediting: integrating immunity’s roles in most cancers suppression and promotion. Science 331, 1565–1570 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Sica, A. & Mantovani, A. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Make investments. 122, 787–795 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Naito, Y. et al. CD8+ T cells infiltrated inside most cancers cell nests as a prognostic think about human colorectal most cancers. Most cancers Res. 58, 3491–3494 (1998).

    CAS 

    Google Scholar
     

  • Zhang, S. et al. Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor growth in mice with out affecting regeneration. Gastroenterology 154, 1421–1434 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Miller, J. B. & Siegwart, D. J. Design of artificial supplies for intracellular supply of RNAs: from siRNA-mediated gene silencing to CRISPR/Cas gene enhancing. Nano Res. 11, 5310–5337 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wu, S. Y., Lopez-Berestein, G., Calin, G. A. & Sood, A. Okay. RNAi therapies: drugging the undruggable. Sci. Trans. Med 6, 240–247 (2014).


    Google Scholar
     

  • Cox, A. D. & Der, C. J. Ras historical past: the saga continues. Small GTPases 1, 2–27 (2010).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments