Wednesday, June 29, 2022
HomeTechnologyFull-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor...

Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes


  • 1.

    Perucca, P., Dubeau, F. & Gotman, J. Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology. Brain 137, 183–196 (2014).


    Google Scholar
     

  • 2.

    Modur, P. N. High frequency oscillations and infraslow activity in epilepsy. Ann. Indian Acad. Neurol. 17, S99–S106 (2014).


    Google Scholar
     

  • 3.

    Revankar, G. S. et al. in Seizures in Critical Care: A Guide to Diagnosis and Therapeutics (eds Varelas, P. N. and Claassen, J.) 77–90 (Humana Press, 2017); https://doi.org/10.1007/978-3-319-49557-6_5

  • 4.

    Dreier, J. P. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat. Med. 17, 439–447 (2011).

    CAS 

    Google Scholar
     

  • 5.

    Staba, R. J., Stead, M. & Worrell, G. A. Electrophysiological biomarkers of epilepsy. Neurotherapeutics 11, 334–346 (2014).

    CAS 

    Google Scholar
     

  • 6.

    Dell, K. L., Cook, M. J. & Maturana, M. I. Deep brain stimulation for epilepsy: biomarkers for optimization. Curr. Treat. Options Neurol. 21, 47 (2019).


    Google Scholar
     

  • 7.

    Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B. & Zaveri, H. P. Seizure prediction—ready for a new era. Nat. Rev. Neurol. 14, 618–630 (2018).


    Google Scholar
     

  • 8.

    Chari, A., Thornton, R. C., Tisdall, M. M. & Scott, R. C. Microelectrode recordings in human epilepsy: a case for clinical translation. Brain Commun. 2, fcaa082 (2020).


    Google Scholar
     

  • 9.

    Lee, S. et al. DC shifts, high frequency oscillations, ripples and fast ripples in relation to the seizure onset zone. Seizure 77, 52–58 (2020).


    Google Scholar
     

  • 10.

    Li, C. et al. Evaluation of microelectrode materials for direct-current electrocorticography. J. Neural Eng. 13, 16008 (2015).


    Google Scholar
     

  • 11.

    Hartings, J. A. How slow can you go? Nat. Mater. 18, 194–196 (2019).

    CAS 

    Google Scholar
     

  • 12.

    Major, S., Gajovic-Eichelmann, N., Woitzik, J. & Dreier, J. P. Oxygen-induced and pH-induced direct current artifacts on invasive platinum/iridium electrodes for electrocorticography. Neurocrit. Care 35, 146–159 (2021).


    Google Scholar
     

  • 13.

    Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).


    Google Scholar
     

  • 14.

    Kostarelos, K., Vincent, M., Hebert, C. & Garrido, J. A. Graphene in the design and engineering of next-generation neural interfaces. Adv. Mater. 29, 1700909 (2017).


    Google Scholar
     

  • 15.

    Blaschke, B. M. et al. Mapping brain activity with flexible graphene micro-transistors. 2D Mater. 4, 025040 (2017).


    Google Scholar
     

  • 16.

    Hébert, C. et al. Flexible graphene solution-gated field-effect transistors: efficient transducers for micro-electrocorticography. Adv. Funct. Mater. 28, 1703976 (2017).

  • 17.

    Masvidal-Codina, E. et al. High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nat. Mater. 18, 280–288 (2019).

    CAS 

    Google Scholar
     

  • 18.

    Weltman, A., Yoo, J. & Meng, E. Flexible, penetrating brain probes enabled by advances in polymer microfabrication. Micromachines 7, 180 (2016).


    Google Scholar
     

  • 19.

    Tien, L. W. et al. Silk as a multifunctional biomaterial substrate for reduced glial scarring around brain-penetrating electrodes. Adv. Funct. Mater. 23, 3185–3193 (2013).

    CAS 

    Google Scholar
     

  • 20.

    Coenen, A. M. L. & Van Luijtelaar, E. L. J. M. Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav. Genet. 33, 635–655 (2003).

    CAS 

    Google Scholar
     

  • 21.

    Terlau, J. et al. Spike-wave discharges in absence epilepsy: segregation of electrographic components reveals distinct pathways of seizure activity. J. Physiol. https://doi.org/10.1113/JP279483 (2020).

  • 22.

    Zijlmans, M. et al. High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 71, 169–178 (2012).


    Google Scholar
     

  • 23.

    Jacobs, J. et al. High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol. 98, 302–315 (2012).

    CAS 

    Google Scholar
     

  • 24.

    Ikeda, A. et al. Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain 122, 827–838 (1999).


    Google Scholar
     

  • 25.

    Wu, S. et al. Role of ictal baseline shifts and ictal high-frequency oscillations in stereo-electroencephalography analysis of mesial temporal lobe seizures. Epilepsia 55, 690–698 (2014).


    Google Scholar
     

  • 26.

    Vanhatalo, S. et al. Very slow EEG responses lateralize temporal lobe seizures: an evaluation of non-invasive DC-EEG. Neurology 60, 1098–1104 (2003).

    CAS 

    Google Scholar
     

  • 27.

    Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2012).

    CAS 

    Google Scholar
     

  • 28.

    Hess, L. H. Graphene transistors for biosensing and bioelectronics. Proc. IEEE 101, 1780–1792 (2013).

    CAS 

    Google Scholar
     

  • 29.

    Hess, L. H. et al. High-transconductance graphene solution-gated field effect transistors. Appl. Phys. Lett. 99, 033503 (2011).


    Google Scholar
     

  • 30.

    Garcia-Cortadella, R. et al. Distortion-free sensing of neural activity using graphene transistors. Small 16, 1906640 (2020).

    CAS 

    Google Scholar
     

  • 31.

    Lecomte, A. et al. Silk and PEG as means to stiffen a parylene probe for insertion in the brain: toward a double time-scale tool for local drug delivery. J. Micromech. Microeng. 25, 125003 (2015).


    Google Scholar
     

  • 32.

    Fueta, Y. & Avoli, M. Effects of antiepileptic drugs on 4-aminopyridine-induced epileptiform activity in young and adult rat hippocampus. Epilepsy Res. 12, 207–215 (1992).

    CAS 

    Google Scholar
     

  • 33.

    Padmanabhan, K. & Urban, N. N. Disrupting information coding via block of 4-AP-sensitive potassium channels. J. Neurophysiol. 112, 1054–1066 (2014).

    CAS 

    Google Scholar
     

  • 34.

    Zakharov, A., Chernova, K., Burkhanova, G., Holmes, G. L. & Khazipov, R. Segregation of seizures and spreading depolarization across cortical layers. Epilepsia 60, 2386–2397 (2019).

    CAS 

    Google Scholar
     

  • 35.

    Hartings, J. A. et al. Direct current electrocorticography for clinical neuromonitoring of spreading depolarizations. J. Cereb. Blood Flow Metab. 37, 1857–1870 (2017).


    Google Scholar
     

  • 36.

    Harriott, A. M., Takizawa, T., Chung, D. Y. & Chen, S. P. Spreading depression as a preclinical model of migraine. J. Headache Pain 20, 45 (2019).


    Google Scholar
     

  • 37.

    Buzsáki, G. & Lopes da Silva, F. L High frequency oscillations in the intact brain. Prog. Neurobiol. 98, 241–249 (2012).


    Google Scholar
     

  • 38.

    Ikeda, A. et al. Active direct current (DC) shifts an “Red slow”: two new concepts for seizure mechanisms and identification of the epileptogenic zone. Neurosci. Res. 156, 95–101 (2020).


    Google Scholar
     

  • 39.

    Kamarajan, C., Pandey, A. K., Chorlian, D. B. & Porjesz, B. The use of current source density as electrophysiological correlates in neuropsychiatric disorders: a review of human studies. Int. J. Psychophysiol. 97, 310–322 (2015).


    Google Scholar
     

  • 40.

    Flynn, S. P., Barrier, S., Scott, R. C., Lenck-Santini, P. P. & Holmes, G. L. Status epilepticus induced spontaneous dentate gyrus spikes: in vivo current source density analysis. PLoS ONE 10, e0132630 (2015).


    Google Scholar
     

  • 41.

    Coenen, A. M. L. & Van Luijtelaar, E. L. J. M. The WAG/Rij rat model for absence epilepsy: age and sex factors. Epilepsy Res. 1, 297–301 (1987).

    CAS 

    Google Scholar
     

  • 42.

    Orlowska-Feuer, P. et al. Infra-slow modulation of fast beta/gamma oscillations in the mouse visual system. J. Physiol. 599, 1631–1650 (2021).

    CAS 

    Google Scholar
     

  • 43.

    Garcia-Cortadella, R. et al. Graphene active sensor arrays for long-term and wireless mapping of wide frequency band epicortical brain activity. Nat. Commun. 12, 211 (2021).

    CAS 

    Google Scholar
     

  • 44.

    Bahari, F. et al. Seizure-associated spreading depression is a major feature of ictal events in two animal models of chronic epilepsy. Preprint at bioRxiv https://doi.org/10.1101/455519 (2020).

  • 45.

    Dreier, J. P. et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain 135, 259–275 (2012).


    Google Scholar
     

  • 46.

    Dreier, J. P. et al. Recording, analysis, and interpretation of spreading depolarizations in neurointensive care: review and recommendations of the COSBID research group. J. Cereb. Blood Flow Metab. 37, 1595–1625 (2017).


    Google Scholar
     

  • 47.

    De Tisi, J. et al. The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378, 1388–1395 (2011).


    Google Scholar
     

  • 48.

    Kanazawa, K. et al. Intracranially recorded ictal direct current shifts may precede high frequency oscillations in human epilepsy. Clin. Neurophysiol. 126, 47–59 (2015).


    Google Scholar
     

  • 49.

    Lauritzen, M. et al. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J. Cereb. Blood Flow Metab. 31, 17–35 (2011).


    Google Scholar
     

  • 50.

    Schaefer, N. et al. Improved metal-graphene contacts for low-noise, high-density microtransistor arrays for neural sensing. Carbon 161, 647–655 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Jin, H. J. et al. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 15, 1241–1247 (2005).

    CAS 

    Google Scholar
     

  • 52.

    Rockwood, D. N. et al. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612–1631 (2011).

    CAS 

    Google Scholar
     

  • 53.

    Vepari, C. & Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 32, 991–1007 (2007).

    CAS 

    Google Scholar
     

  • 54.

    Cao, Y. & Wang, B. Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10, 1514–1524 (2009).

    CAS 

    Google Scholar
     

  • 55.

    Gobin, A. S., Froude, V. E. & Mathur, A. B. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J. Biomed. Mater. Res. A 74, 465–473 (2005).


    Google Scholar
     

  • 56.

    Russo, E. et al. Upholding WAG/Rij rats as a model of absence epileptogenesis: hidden mechanisms and a new theory on seizure development. Neurosci. Biobehav. Rev. 71, 388–408 (2016).

    CAS 

    Google Scholar
     

  • 57.

    van Luijtelaar, G. & van Oijen, G. Establishing drug effects on electrocorticographic activity in a genetic absence epilepsy model: advances and pitfalls. Front. Pharmacol. 11, 395 (2020).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments