Sunday, June 26, 2022
HomeTechnologyInterfacial-engineering-enabled practical low-temperature sodium metal battery

Interfacial-engineering-enabled practical low-temperature sodium metal battery


  • 1.

    Tarascon, J. M. Is lithium the new gold? Nat. Chem. 2, 510 (2010).

    CAS 

    Google Scholar
     

  • 2.

    Slater, M. D., Kim, D., Lee, E. & Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 23, 947–958 (2013).

    CAS 

    Google Scholar
     

  • 3.

    Fan, X. et al. High-performance all-solid-state Na–S battery enabled by casting–annealing technology. ACS Nano 12, 3360–3368 (2018).

    CAS 

    Google Scholar
     

  • 4.

    Zhou, W., Li, Y., Xin, S. & Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017).

    CAS 

    Google Scholar
     

  • 5.

    Zhao, C. et al. Solid-state sodium batteries. Adv. Energy Mater. 8, 1703012 (2018).


    Google Scholar
     

  • 6.

    Goodenough, J. B., Hong, H.-P. & Kafalas, J. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976).

    CAS 

    Google Scholar
     

  • 7.

    Lu, Y., Li, L., Zhang, Q., Niu, Z. & Chen, J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2, 1747–1770 (2018).

    CAS 

    Google Scholar
     

  • 8.

    Hou, W. et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: progress and perspective. Nano Energy 52, 279–291 (2018).

    CAS 

    Google Scholar
     

  • 9.

    Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).


    Google Scholar
     

  • 10.

    Berbano, S. S., Seo, I., Bischoff, C. M., Schuller, K. E. & Martin, S. W. Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling. J. Non Cryst. Solids 358, 93–98 (2012).

    CAS 

    Google Scholar
     

  • 11.

    Heo, J. W., Banerjee, A., Park, K. H., Jung, Y. S. & Hong, S.-T. New Na-ion solid electrolytes Na4–xSn1−xSbxS4 (0.02 ≤ x ≤ 0.33) for all-solid-state Na-ion batteries. Adv. Energy Mater. 8, 1702716 (2018).


    Google Scholar
     

  • 12.

    Lu, X., Xia, G., Lemmon, J. P. & Yang, Z. Advanced materials for sodium–beta alumina batteries: status, challenges and perspectives. J. Power Sources 195, 2431–2442 (2010).

    CAS 

    Google Scholar
     

  • 13.

    Lu, X. et al. Liquid–metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage. Nat. Commun. 5, 4578 (2014).

    CAS 

    Google Scholar
     

  • 14.

    Näfe, H., Fritz, M. & Lorenz, W. On the defect electron conduction parameter of Na·beta-alumina. Solid State Ion 74, 275–278 (1994).


    Google Scholar
     

  • 15.

    Lu, X. et al. Advanced intermediate-temperature Na–S battery. Energy Environ. Sci. 6, 299–306 (2013).

    CAS 

    Google Scholar
     

  • 16.

    Li, G. et al. Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density. Nat. Commun. 7, 10683 (2016).

    CAS 

    Google Scholar
     

  • 17.

    Wen, Z. et al. Research on sodium sulfur battery for energy storage. Solid State Ion 179, 1697–1701 (2008).

    CAS 

    Google Scholar
     

  • 18.

    Wen, Z. et al. Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries. J. Power Sources 184, 641–645 (2008).

    CAS 

    Google Scholar
     

  • 19.

    De Jonghe, L. C., Feldman, L. & Beuchele, A. Slow degradation and electron conduction in sodium/beta-aluminas. J. Mater. Sci. 16, 780–786 (1981).


    Google Scholar
     

  • 20.

    Williams, R. M. et al. The thermal stability of sodium beta”-alumina solid electrolyte ceramic in AMTEC cells. In Space Technology and Applications International Forum 1306–1311 (AIP, 1999).

  • 21.

    Ansell, R. The chemical and electrochemical stability of beta-alumina. J. Mater. Sci. 21, 365–379 (1986).

    CAS 

    Google Scholar
     

  • 22.

    Bay, M. C. et al. Sodium plating from Na‐β″‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Adv. Energy Mater. 10, 1902899 (2020).

    CAS 

    Google Scholar
     

  • 23.

    Lacivita, V., Wang, Y., Bo, S.-H. & Ceder, G. Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries. J. Mater. Chem. A 7, 8144–8155 (2019).

    CAS 

    Google Scholar
     

  • 24.

    Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    CAS 

    Google Scholar
     

  • 26.

    Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).


    Google Scholar
     

  • 27.

    Bianchini, F., Fjellvag, H. & Vajeeston, P. A first principle comparative study of the ionic diffusivity in LiAlO2 and NaAlO2 polymorphs for solid-state battery applications. Phys. Chem. Chem. Phys. 20, 9824–9832 (2018).

    CAS 

    Google Scholar
     

  • 28.

    Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. R. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    CAS 

    Google Scholar
     

  • 29.

    Aetukuri, N. B. et al. Flexible ion‐conducting composite membranes for lithium batteries. Adv. Energy Mater. 5, 1500265 (2015).


    Google Scholar
     

  • 30.

    Cho, Y.-H. et al. Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3. J. Mater. Sci. 47, 5970–5977 (2012).

    CAS 

    Google Scholar
     

  • 31.

    Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries-an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    CAS 

    Google Scholar
     

  • 32.

    Kim, Y. et al. The effect of relative density on the mechanical properties of hot‐pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 99, 1367–1374 (2016).

    CAS 

    Google Scholar
     

  • 33.

    Wolfenstine, J., Allen, J. L., Sakamoto, J., Siegel, D. J. & Choe, H. Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review. Ionics 24, 1271–1276 (2017).


    Google Scholar
     

  • 34.

    De Jonghe, L. C. Transport number gradients and solid electrolyte degradation. J. Electrochem. Soc. 129, 752–755 (1982).


    Google Scholar
     

  • 35.

    Zhang, L., Zhu, L. & Virkar, A. V. Electronic conductivity measurement of yttria-stabilized zirconia solid electrolytes by a transient technique. J. Power Sources 302, 98–106 (2016).

    CAS 

    Google Scholar
     

  • 36.

    Rangasamy, E., Wolfenstine, J. & Sakamoto, J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ion 206, 28–32 (2012).

    CAS 

    Google Scholar
     

  • 37.

    Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    CAS 

    Google Scholar
     

  • 38.

    Shin, B. R. et al. Comparative study of TiS2/Li–In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014).

    CAS 

    Google Scholar
     

  • 39.

    Wagner, C. Adsorbed atomic species as intermediates in heterogeneous catalysis. Adv. Catal. 21, 323–381 (1970).

  • 40.

    De Jonghe, L. C. & Buechele, A. Chemical colouration of sodium beta-aluminas. J. Mater. Sci. 17, 885–892 (1982).


    Google Scholar
     

  • 41.

    De Jonghe, L. C., Buechele, A. & Armand, M. Oxygen interstitial transport and chemical coloration in sodium-beta alumina. Solid State Ion. 9, 165–168 (1983).


    Google Scholar
     

  • 42.

    Weber, N. A thermoelectric device based on beta-alumina solid electrolyte. Energy Convers. 14, 1–8 (1974).

    CAS 

    Google Scholar
     

  • 43.

    Westover, A. S., Dudney, N. J., Sacci, R. L. & Kalnaus, S. Deposition and confinement of Li metal along an artificial Lipon–Lipon interface. ACS Energy Lett. 4, 651–655 (2019).

    CAS 

    Google Scholar
     

  • 44.

    Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater. 7, 1701003 (2017).


    Google Scholar
     

  • 45.

    Yao, H. R. et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries. J. Am. Chem. Soc. 139, 8440–8443 (2017).

    CAS 

    Google Scholar
     

  • 46.

    Fukunaga, A. et al. Intermediate-temperature ionic liquid NaFSA–KFSA and its application to sodium secondary batteries. J. Power Sources 209, 52–56 (2012).

    CAS 

    Google Scholar
     

  • 47.

    Kubota, K., Nohira, T., Goto, T. & Hagiwara, R. Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: binary mixtures of alkali bis(fluorosulfonyl)amides. Electrochem. Commun. 10, 1886–1888 (2008).

    CAS 

    Google Scholar
     

  • 48.

    Bish, D. L. & Howard, S. Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 21, 86–91 (1988).

    CAS 

    Google Scholar
     

  • 49.

    Cheary, R. W. & Coelho, A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 25, 109–121 (1992).

    CAS 

    Google Scholar
     

  • 50.

    Reed, D. et al. Wetting of sodium on β″-Al2O3/YSZ composites for low temperature planar sodium-metal halide batteries. J. Power Sources 227, 94–100 (2013).

    CAS 

    Google Scholar
     

  • 51.

    Huntington, H. B. Ultrasonic measurements on single crystals. Phys. Rev. 72, 321 (1947).

    CAS 

    Google Scholar
     

  • 52.

    de With, G. & Wagemans, H. H. Ball-on-ring test revisited. J. Am. Ceram. Soc. 72, 1538–1541 (1989).


    Google Scholar
     

  • 53.

    Han, F., Zhu, Y., He, X., Mo, Y. & Wang, C. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016).


    Google Scholar
     

  • 54.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS 

    Google Scholar
     

  • 55.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).


    Google Scholar
     

  • 56.

    Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    CAS 

    Google Scholar
     

  • 57.

    Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li−Fe−P−O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008).

    CAS 

    Google Scholar
     

  • 58.

    Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS 

    Google Scholar
     

  • 59.

    Young, T.III. An essay on the cohesion of fluid. Phil. Trans. R. Soc. Lond. 1805, 65–87 (1805).


    Google Scholar
     

  • 60.

    Kim, Y., Ko, W.-S. & Lee, B.-J. Second nearest-neighbor modified embedded atom method interatomic potentials for the Na unary and Na–Sn binary systems. Comp. Mater. Sci. 185, 109953 (2020).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments