Wednesday, June 29, 2022
HomeTechnologyThree-dimensional transistor arrays for intra- and inter-cellular recording

Three-dimensional transistor arrays for intra- and inter-cellular recording


  • 1.

    Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    CAS 

    Google Scholar
     

  • 2.

    Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).

    CAS 

    Google Scholar
     

  • 3.

    Dai, X. et al. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776–782 (2016).

    CAS 

    Google Scholar
     

  • 4.

    Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    CAS 

    Google Scholar
     

  • 5.

    Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    CAS 

    Google Scholar
     

  • 6.

    Wang, X. & Li, M. Automated electrophysiology: high throughput of art. Assay Drug Dev. Technol. 1, 695–708 (2003).

    CAS 

    Google Scholar
     

  • 7.

    Fast, V. G. & Kléber, A. G. Microscopic conduction in cultured strands of neonatal rat heart cells measured with voltage-sensitive dyes. Circ. Res. 73, 914–925 (1993).

    CAS 

    Google Scholar
     

  • 8.

    Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    CAS 

    Google Scholar
     

  • 9.

    Zhang, X. Nanowires pin neurons: a nano “moon landing”. Matter 1, 560–562 (2019).


    Google Scholar
     

  • 10.

    Aranega, A., de la Rosa, A. & Franco, D. Cardiac conduction system anomalies and sudden cardiac death: insights from murine models. Front. Physiol. 3, 211 (2012).


    Google Scholar
     

  • 11.

    Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

    CAS 

    Google Scholar
     

  • 12.

    Tian, B. & Lieber, C. M. Nanowired bioelectric interfaces. Chem. Rev. 119, 9136–9152 (2019).

    CAS 

    Google Scholar
     

  • 13.

    Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).


    Google Scholar
     

  • 14.

    Khang, D. Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006).

    CAS 

    Google Scholar
     

  • 15.

    Schaefer, N. et al. Multiplexed neural sensor array of graphene solution-gated field-effect transistors. 2D Mater. 7, 025046 (2020).

    CAS 

    Google Scholar
     

  • 16.

    Lee, J. W. et al. Analysis of charge sensitivity and low frequency noise limitation in silicon nanowire sensors. J. Appl. Phys. 107, 044501 (2010).


    Google Scholar
     

  • 17.

    Rettinger, J., Schwarz, S. & Schwarz, W. Electrophysiology (Springer, 2016).

  • 18.

    Noy, A. Bionanoelectronics. Adv. Mater. 23, 807–820 (2011).

    CAS 

    Google Scholar
     

  • 19.

    Hempel, F. et al. PEDOT:PSS organic electrochemical transistor arrays for extracellular electrophysiological sensing of cardiac cells. Biosens. Bioelectron. 93, 132–138 (2017).

    CAS 

    Google Scholar
     

  • 20.

    Grant, A. O. Cardiac ion channels. Circ. Arrhythm. Electrophysiol. 2, 185–194 (2009).


    Google Scholar
     

  • 21.

    Duan, X. et al. Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor. Nat. Nanotechnol. 7, 174–179 (2011).


    Google Scholar
     

  • 22.

    Gong, H. et al. Biomembrane-modified field effect transistors for sensitive and quantitative detection of biological toxins and pathogens. ACS Nano 13, 3714–3722 (2019).

    CAS 

    Google Scholar
     

  • 23.

    Qing, Q. et al. Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions. Nat. Nanotechnol. 9, 142–147 (2014).

    CAS 

    Google Scholar
     

  • 24.

    Zhao, Y. et al. Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording. Nat. Nanotechnol. 14, 783–790 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).

    CAS 

    Google Scholar
     

  • 26.

    Xie, C. et al. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012).

    CAS 

    Google Scholar
     

  • 27.

    Elcarpio, J. O. B. D. et al. HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl Acad. Sci. USA 95, 2979–2984 (1998).


    Google Scholar
     

  • 28.

    Hegyi, B., Chen-Izu, Y., Izu, L. T. & Bányász, T. Altered K+ current profiles underlie cardiac action potential shortening in hyperkalemia and β-adrenergic stimulation. Can. J. Physiol. Pharmacol. 97, 773–780 (2019).

    CAS 

    Google Scholar
     

  • 29.

    Lu, Y.-Y. et al. Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: a contribution to hypokalemia- or hyponatremia-induced atrial fibrillation. Heart Rhythm 13, 781–788 (2016).


    Google Scholar
     

  • 30.

    Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).

    CAS 

    Google Scholar
     

  • 31.

    Czeschik, A. et al. Nanostructured cavity devices for extracellular stimulation of HL-1 cells. Nanoscale 7, 9275–9281 (2015).

    CAS 

    Google Scholar
     

  • 32.

    Kireev, D. et al. Graphene multielectrode arrays as a versatile tool for extracellular measurements. Adv. Healthc. Mater. 6, 1601433 (2017).


    Google Scholar
     

  • 33.

    Bers, D. M., Barry, W. H. & Despa, S. Intracellular Na+ regulation in cardiac myocytes. Cardiovasc. Res. 57, 897–912 (2003).

    CAS 

    Google Scholar
     

  • 34.

    Brown, A. M., Lee, K. S. & Powell, T. Voltage clamp and internal perfusion of single rat heart muscle cells. J. Physiol. 318, 455–477 (1981).

    CAS 

    Google Scholar
     

  • 35.

    Gouwens, N. W. & Wilson, R. I. Signal propagation in Drosophila central neurons. J. Neurosci. 29, 6239–6249 (2009).

    CAS 

    Google Scholar
     

  • 36.

    McCain, M. L. et al. Cell-to-cell coupling in engineered pairs of rat ventricular cardiomyocytes: relation between Cx43 immunofluorescence and intercellular electrical conductance. Am. J. Physiol. Heart Circ. Physiol. 302, H443–H450 (2012).

    CAS 

    Google Scholar
     

  • 37.

    Lancaster, M. A. & Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345, 1247125 (2014).


    Google Scholar
     

  • 38.

    Hong, G. et al. A method for single-neuron chronic recording from the retina in awake mice. Science 360, 1447–1451 (2018).

    CAS 

    Google Scholar
     

  • 39.

    Dipalo, M. et al. Intracellular and extracellular recording of spontaneous action potentials in mammalian neurons and cardiac cells with 3D plasmonic nanoelectrodes. Nano Lett. 17, 3932–3939 (2017).

    CAS 

    Google Scholar
     

  • 40.

    Nattel, S. Electrical coupling between cardiomyocytes and fibroblasts: experimental testing of a challenging and important concept. Cardiovasc. Res. 114, 349–352 (2018).

    CAS 

    Google Scholar
     

  • 41.

    Lin, Z. C. et al. Accurate nanoelectrode recording of human pluripotent stem cell-derived cardiomyocytes for assaying drugs and modeling disease. Microsyst. Nanoeng. 3, 16080 (2017).

    CAS 

    Google Scholar
     

  • 42.

    Desmaisons, D., Vincent, J.-D. & Lledo, P.-M. Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J. Neurosci. 19, 10727–10737 (1999).

    CAS 

    Google Scholar
     

  • 43.

    Frohnwieser, B., Chen, L. Q., Schreibmayer, W. & Kallen, R. G. Modulation of the human cardiac sodium channel alpha-subunit by cAMP-dependent protein kinase and the responsible sequence domain. J. Physiol. 498, 309–318 (1997).

    CAS 

    Google Scholar
     

  • 44.

    Boehmer, G., Greffrath, W., Martin, E. & Hermann, S. Subthreshold oscillation of the membrane potential in magnocellular neurones of the rat supraoptic nucleus. J. Physiol. 526, 115–128 (2000).

    CAS 

    Google Scholar
     

  • 45.

    Kamiya, K. et al. Electrophysiological measurement of ion channels on plasma/organelle membranes using an on-chip lipid bilayer system. Sci. Rep. 8, 17498 (2018).


    Google Scholar
     

  • 46.

    Li, J. et al. Scanning microwave microscopy of vital mitochondria in respiration buffer. In Proc. 2018 IEEE MTT-S International Microwave Symposium 115–118 (IEEE, 2018).

  • 47.

    Moon, C. H. et al. KR-31378, a novel benzopyran analog, attenuates hypoxia-induced cell death via mitochondrial KATP channel and protein kinase C-ε in heart-derived H9c2 cells. Eur. J. Pharmacol. 506, 27–35 (2004).

    CAS 

    Google Scholar
     

  • 48.

    Zhao, Y. et al. A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176, 913–927.e18 (2019).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments